
Creating a Helper Bot to Generate a User
Shopping List Recommendation Based on

their Budget
Mahameru Ds 13519014

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
E-mail (gmail): erutan.ds20@gmail.com

Abstract—We’re often being faced to the difficulties of choice
when shopping on an online shop, finding ourself wondering how
could we maximize the potential value of the items that we
bought given that we only have a certain budget? This paper tries
to solve that problem by using the classic example of The
Knapsack Problem, more specifically, the 0/1 Knapsack Problem.

Keywords—Knapsack, Shopping List, Pattern Matching,
Dynamic Programming

I. INTRODUCTION (HEADING 1)
The Knapsack problem is one of the most classic

combinatorial problems in computer science. To put it simply,
this problem consists of many items, a bag, and a limit, and we
need to find out what is the best combination within the limit
that we can include in the bag with the most value possible. In
this paper, we will try to apply this problem to recommending
a shopping list to our user given the scenario : let’s say we are
running an online shop with a certain amount of items. Each
item has their own popularity, which is how many people
bought them and what are their reviews towards the product.
We will try to create a program that will recommend the most
optimal combination of items that the user can purchase given
their budget, that is, how can the user buy as much popular
item as they can within a certain budget?

Our application will also be supported by a bot that can
parse and understand human language, using the functionality
of regular expression string matching within javascript to
provide users with ease of use.

II. THEORETICAL FOUNDATION

A. The Knapsack Problem
The knapsack problem is a problem in combinatorial

optimization: Given a set of items, each with a weight and a
value, determine the number of each item to include in a
collection so that the total weight is less than or equal to a
given limit and the total value is as large as possible. It derives
its name from the problem faced by someone who is
constrained by a fixed-size knapsack and must fill it with the
most valuable items. The problem often arises in resource
allocation where the decision makers have to choose from a
set of non-divisible projects or tasks under a fixed budget or
time constraint, respectively.

The knapsack problem has been studied for more than a
century, with early works dating as far back as 1897. The
name "knapsack problem" dates back to the early works of the
mathematician Tobias Dantzig (1884–1956), and refers to the
commonplace problem of packing the most valuable or useful
items without overloading the luggage.

Our discussion will specifically focus on the 0/1 Knapsack
Problem. Given weights and values of n items, put these items
in a knapsack of capacity W to get the maximum total value in
the knapsack. In other words, given two integer arrays
val[0..n-1] and wt[0..n-1] which represent values and weights
associated with n items respectively. Also given an integer W
which represents knapsack capacity, find out the maximum
value subset of val[] such that the sum of the weights of this
subset is smaller than or equal to W. You cannot break an item,
either pick the complete item or don’t pick it (0-1 property).

B. Knapsack Problem with Dynamic Programming
Dynamic Programming (DP) is an algorithmic technique

for solving an optimization problem by breaking it down into
simpler subproblems and utilizing the fact that the optimal
solution to the overall problem depends upon the optimal
solution to its subproblems.

Dynamic programming is both a mathematical
optimization method and a computer programming method.

The method was developed by Richard Bellman in the 1950s
and has found applications in numerous fields, from aerospace
engineering to economics.

In both contexts it refers to simplifying a complicated
problem by breaking it down into simpler sub-problems in a
recursive manner. While some decision problems cannot be
taken apart this way, decisions that span several points in time
do often break apart recursively. Likewise, in computer
science, if a problem can be solved optimally by breaking it
into sub-problems and then recursively finding the optimal
solutions to the sub-problems, then it is said to have optimal
substructure.

If sub-problems can be nested recursively inside larger
problems, so that dynamic programming methods are
applicable, then there is a relation between the value of the
larger problem and the values of the sub-problems.[1] In the
optimization literature this relationship is called the Bellman
equation.

In the Dynamic programming we will work considering
the same cases as mentioned in the recursive approach. In a
DP[][] table let’s consider all the possible weights from ‘1’ to
‘W’ as the columns and weights that can be kept as the rows.

The state DP[i][j] will denote the maximum value of
‘j-weight’ considering all values from ‘1 to ith’. So if we
consider ‘wi’ (weight in ‘ith’ row) we can fill it in all columns
which have ‘weight values > wi’. Now two possibilities can
take place:

Fill ‘wi’ in the given column.

Do not fill ‘wi’ in the given column.

Now we have to take a maximum of these two
possibilities, formally if we do not fill ‘ith’ weight in ‘jth’
column then DP[i][j] state will be same as DP[i-1][j] but if we
fill the weight, DP[i][j] will be equal to the value of ‘wi’+
value of the column weighing ‘j-wi’ in the previous row.

C. Regular Expression
A regular expression (shortened as regex or regexp;[1] also

referred to as rational expression[2][3]) is a sequence of
characters that specifies a search pattern. Usually such patterns
are used by string-searching algorithms for "find" or "find and
replace" operations on strings, or for input validation. It is a
technique developed in theoretical computer science and
formal language theory.

The concept arose in the 1950s when the American
mathematician Stephen Cole Kleene formalized the
description of a regular language. The concept came into
common use with Unix text-processing utilities. Different
syntaxes for writing regular expressions have existed since the
1980s, one being the POSIX standard and another, widely
used, being the Perl syntax.

Regular expressions are used in search engines, search and
replace dialogs of word processors and text editors, in text
processing utilities such as sed and AWK and in lexical
analysis. Many programming languages provide regex
capabilities either built-in or via libraries, as it has uses in
many situations.

D. Pattern Matching with Regular Expression

In computer science, pattern matching is the act of
checking a given sequence of tokens for the presence of the
constituents of some pattern. In contrast to pattern recognition,
the match usually has to be exact: "either it will or will not be
a match." The patterns generally have the form of either
sequences or tree structures. Uses of pattern matching include
outputting the locations (if any) of a pattern within a token
sequence, to output some component of the matched pattern,
and to substitute the matching pattern with some other token
sequence (i.e., search and replace).

Tree patterns are used in some programming languages as
a general tool to process data based on its structure, e.g. C#,[1]
F#,[2] Haskell, ML, Rust,[3] Scala,[4] Swift[5] and the
symbolic mathematics language Mathematica have special
syntax for expressing tree patterns and a language construct
for conditional execution and value retrieval based on it.

Often it is possible to give alternative patterns that are tried
one by one, which yields a powerful conditional programming
construct. Pattern matching sometimes includes support for
guards.Regular expressions are patterns used to match
character combinations in strings. In JavaScript, regular
expressions are also objects. These patterns are used with the
exec() and test() methods of RegExp, and with the match(),
matchAll(), replace(), replaceAll(), search(), and split()
methods of String.

A regular expression pattern is composed of simple
characters, such as /abc/, or a combination of simple and
special characters, such as /ab*c/ or /Chapter (\d+)\.\d*/. The
last example includes parentheses, which are used as a
memory device. The match made with this part of the pattern
is remembered for later use.

III. IMPLEMENTATION

This program will be implemented using javascript and
typescript by creating a REST API using the help of Node.js
and Express. The Idea is to have an endpoint that will receive
an input message. The program will later parse this input
message and try to extract the important bits of information
that is included in the input message to later be forwarded into
another function that will process the items. This endpoint will
later returns the necessary data that the user requires, which is
the list of items that has been processed to be the optimal
shopping list, given a budget that the user has provided.

In the application, this process will be executed in the
“/itemlist” endpoint of the REST API. This endpoint are
stored in the “index.ts” file in our program.

Most of our program logic will be handled by the module
“utilities/item_recommendation.ts”

Our applications are using a user -friendly interface in
which the user can just type what they’re thinking and the
program will try to recognize what the user is trying to do.
Because of that, before we can process the data, we need to
make sure that we are processing the right data that the user
asked. This process is being executed by the functions
getItemCategory and getBudget. These two functions will try
to find what kind of item the user wants and what their budget.
These to values will later be passed to the getBestValue
function that will later process the optimized result.

function getItemCategory(inputMessage: any) {

const findCategoryRegex = /Books|Furniture|Music|Electronics/gi;

const itemCategory = inputMessage.match(findCategoryRegex);

return itemCategory;

}

function getBudget(inputMessage: any) {

let findBudget = /budget.?\d+/gi;

let budget = inputMessage.match(findBudget)[0].split(" ")[1];

// let index = findBudget.findIndex(budget)

// budget = findBudget.;

return budget;

}

getBestValue function are used to pick the best
combination of item given certain itemCategories and budget
that the user requires. This function works by using the idea of
Dynamic programming, which is solving and memorizing
subproblems for later use.

function getBestValue(items: item[], itemCategory: string[], budget: number) {

const filteredItems = items.filter((item) =>

itemCategory.includes(item.category.toLowerCase())

);

let optimalCombination: number[][] = [];

for (let i = 0; i < filteredItems.length; i++) {

const { id, popularity, price } = filteredItems[i];

optimalCombination.push([]);

for (let currentTotal = 0; currentTotal * 1000 < budget;
currentTotal++) {

if (i == 0 || currentTotal == 0) {

optimalCombination[i].push(0);

} else if (currentTotal < Math.round(price /
1000)) {

const topPopularity = optimalCombination[i - 1][currentTotal];

optimalCombination[i].push(topPopularity);

}

else {

const prevPrice = currentTotal - Math.round(price / 1000);

const prevPopularity = optimalCombination[i - 1][prevPrice];

const topPopularity = optimalCombination[i - 1][currentTotal];

const bestValue = max(topPopularity, prevPopularity + popularity);

optimalCombination[i].push(bestValue);

}

}

}

let recomendedItems: item[] = [];

let currentCapacity = optimalCombination[1].length - 1;

// console.log(currentCapacity);

// console.log(optimalCombination.length);

for (let i = optimalCombination.length - 1; i > 0; i--) {

if (currentCapacity <= 0) {

break;

}

const current = optimalCombination[i][currentCapacity];

const topValue = optimalCombination[i - 1][currentCapacity];

if (current != topValue) {

recomendedItems.push(filteredItems[i]);

const itemCapacity = Math.round(filteredItems[i].price / 1000);

currentCapacity -= itemCapacity;

}

}

return recomendedItems;

}

This recommendation function is used as a main hub that
connects the “utilities/item_recommendation.ts” module to the
“index.ts” file that controls our REST API.

export function recomendation(inputMessage: string, items: item[]) {

const budget = getBudget(inputMessage);

const itemCategory = getItemCategory(inputMessage);

const recommendedItems = getBestValue(items, itemCategory, budget);

return { message: inputMessage, items: recommendedItems };

}

IV. TEST CASES

The first case is to test what the program will return if we
give a budget that is way below any item that is available in
the database. As expected, the program returns an empty array.

The next test case are to retrieves book items with a
reasonable budget. This time, the application are returning the
books, which are the optimal combination of books that the
user should get if they want to maximize buying as much
popular books as they can.

The applications are not only working with one category of
item, therefore we can test the case where we asked our
application to retrieve the recommended item combination if
we want to include books, furniture, and electronics in our
shopping list.

In case that the user inputs a category that we do not have
in our shop, we will simply return an empty array.

VIDEO LINK AT YOUTUBE

https://youtu.be/fiO9hoHVSOw

GITHUB REPOSITORY

https://github.com/eruds/Shop-Item-Recomendation

ACKNOWLEDGMENT

In this section I would like to express my gratitude towards

God, my friends, and my family for supporting me all the way

up to this point of my life where I finish this paper. I would
also like to express my gratitude to Ir. Rila
Mandala,M.Eng.,Ph.D. as my lecturer and also to the entire
ITB informatics study lecturers. It is thanks to their efforts that
I am able to finish this paper and understand the various
algorithm strategies commonly used in programming.Lastly I
would like to apologize for any mistakes that occured in the
process of making this paper.

REFERENCES

[1] https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
[2] https://en.wikipedia.org/wiki/Regular_expression

[3] https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Progra
m-Dinamis-2020-Bagian1.pdf

[4] https://en.wikipedia.org/wiki/Pattern_matching
[5] https://en.wikipedia.org/wiki/Knapsack_problem
[6] https://www.educative.io/courses/grokking-dynamic-programming-patte

rns-for-coding-interviews/m2G1pAq0OO0
[7] https://en.wikipedia.org/wiki/Dynamic_programming

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Medan, 11 Mei 2021

Mahameru Ds - 13519014

https://youtu.be/fiO9hoHVSOw
https://github.com/eruds/Shop-Item-Recomendation
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/
https://en.wikipedia.org/wiki/Regular_expression
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian1.pdf
https://en.wikipedia.org/wiki/Pattern_matching
https://en.wikipedia.org/wiki/Knapsack_problem
https://www.educative.io/courses/grokking-dynamic-programming-patterns-for-coding-interviews/m2G1pAq0OO0
https://www.educative.io/courses/grokking-dynamic-programming-patterns-for-coding-interviews/m2G1pAq0OO0
https://en.wikipedia.org/wiki/Dynamic_programming

